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Abstract—There is an emerging consensus that the nation’s
electricity grid is vulnerable to cyber attacks. This vulnerability
arises from the increasing reliance on using remote measure-
ments, transmitting them over legacy data networks to system
operators who make critical decisions based on available data.

Data integrity attacks are a class of cyber attacks that involve a
compromise of information that is processed by the grid operator.
This information can include meter readings of injected power
at remote generators, power flows on transmission lines, and
relay states. These data integrity attacks have consequences only
when the system operator responds to compromised data by re-
dispatching generation under normal or contingency protocols.
These consequences include (a) financial losses from sub-optimal
economic dispatch to service loads, (b) robustness/resiliency losses
from placing the grid at operating points that are at greater
risk from contingencies, and (c) systemic losses resulting from
cascading failures induced by poor operational choices.

This paper is focussed on understanding the connections
between grid operational procedures and cyber attacks. We first
offer an example to illustrate how data integrity attacks can cause
economic and physical damage by misleading operators into
taking inappropriate decisions. We then focus on unobservable
data integrity attacks involving power meter data. These are
coordinated attacks where the compromised data is consistent
with the physics of power flow, and is therefore passed by any
bad data detection algorithm. We develop metrics to assess the
economic impact of these attacks under operator re-dispatch
decisions using optimal power flow methods. These metrics can
be used to prioritize the adoption of appropriate countermeasures
including PMU placement, encryption, hardware upgrades, and
advanced detection algorithms.

I. INTRODUCTION

Cybersecurity of critical infrastructures in general, and the

electricity grid in particular, is a subject of increasing research

interest [1], [2]. The economic consequences of successful

cyberattacks on the electricity grid are potentially staggering.

Energy Management Systems [EMS] are ubiquitous in electric

grid operations and present potential targets for cyberattacks.

These systems are based on SCADA [Supervisory Control

and Data Acquisition] hardware and software components

and are used to supervise, control, optimize, and manage

electricity generation and transmission systems. As the grid

evolves, legacy SCADA systems will co-exist and inter-

operate with new components [ex: smart meters], networks

[ex: NASPInet] [3], sensors [ex: phasor measurement units

or PMUs] [4], and control devices [ex: intelligent relays] [5],

[6]. Tomorrow’s Smart Grid will incorporate increased sens-

ing, communication, and distributed control to accommodate

renewable generation, EV [Electric Vehicle] loads, storage,

and many other technologies. This substantial increase in

actionable data transfers will make the Smart Grid more

vulnerable to cyber attacks and is, in turn, driving the urgency

of cybersecurity research for electricity grids.

An important class of cyber attacks are data integrity
attacks. These consist of a set of compromised sensors (ex:

power meters, relays) whose readings are altered by the

attacker. Much of the research on data integrity attacks in

power systems has been on studying taxonomy, developing

detection algorithms, and devising various countermeasures. In

particular, many recent papers have explored various aspects of

data integrity attacks on SCADA/EMS systems that impact the

key function of state estimation. These include computation

and characterization of the attacks, and various detection and

mitigation strategies based on secure PMU placement [7], [8],

[9], [10], [11].

Data integrity attacks are of consequence only when the

system operator reacts to the compromised data and is misled

into taking uneconomical or even catastrophic decisions. There

is some research on analysing integrity attacks in the context

of subsequent operator actions. A detailed two-year study

by Sandia [12] investigated the possible impacts of cyber

attack on grid control systems using novel cyber-to-physical

(C2P) bridge concepts. However, there is little work (to our

knowledge) on quantifying the consequences of data integrity
attacks. This is the essential focus of our work, and it is

important in order to prioritize the adoption of cyber secu-

rity countermeasures including PMU placement, encryption,

hardware upgrades, and advanced detection algorithms. In this

paper, we devise metrics to assess the economic impact of data

integrity attacks under operator re-dispatch decisions based on

optimal power flow methods.

The remainder of this paper is organized as follows: In

Section II we summarize key results on unobservable attacks

and their countermeasures, and in Section III we survey

grid operations under normal and contingency conditions.

Following this, in Section IV we present an example that illus-

trates consequences of unobservable attacks in the context of

operator actions. Section V contains our main results: metrics

to assess the economic impact of unobservable attacks using

optimal power flow methods. We illustrate our method using
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empirical studies in Section VI, and then draw conclusions

and close with a discussion of future research directions.

II. UNOBSERVABLE ATTACKS

Data integrity attacks whose compromised meter readings

are consistent with the physical power flow constraints are

called unobservable [11]. Unobservable attacks require co-

ordination - compromised meter readings must be carefully

orchestrated to fall on a low dimensional manifold in order

for the attack to be unobservable. Unobservable attacks will

pass any bad data detection algorithm. As a consequence,

unobservable attacks can cause significant errors in state

estimation. In [13], we address sparse unobservable attacks

which involve the compromise of a modest number of meters.

Specifically, we offer efficient algorithms to find all unob-

servable attacks involving the compromise of exactly two

power injection meters and an arbitrary number of power

meters on lines. Applying these algorithms to a synthetic

2383 bus power system, we identify 685 possible unobservable

attacks that involve the compromise of 4 or fewer meters [13].

Other examples produce similar statistics. The conclusion is

inescapable: common power systems are vulnerable to a large

number of unobservable data integrity attacks.

Phasor measurement units (PMUs) have recently attracted

a great deal of interest in the context of cyber security appli-

cations. The driving hypothesis is that PMUs are networked

on the modern NASPInet architecture which is designed for

security. We can thus assume that PMU measurements are

a priori known to be secure [14]. Emami and Abur [15]

have shown that with the introduction of a few extra PMUs,

bad data detection and identification capabilities of EMS

systems can be dramatically improved. Known secure PMU

placement problems have been studied by Bobba et al. [16]

who have investigated heuristic algorithms for mitigation of

unobservable data integrity attacks. In [13] we have devel-

oped a method to resist such attacks while maintaining the

robustness and reliability of the system. In our work [13],

we have shown that p + 1 PMUs are sufficient to thwart a

collection of p unobservable attacks and we offer an algorithm

to determine their placement. While these countermeasure

strategies using known-secure PMU’s are effective, they are

extremely expensive because of the number of possible attacks

that require defense in realistic power systems.

Given limited resources for protection against cyber attacks,

it becomes necessary to quantitatively prioritize investments.

There are two components to this prioritization: (a) determin-

ing prior probabilities that an attack occurs in some event

horizon, and (b) assessing the economic consequences of

operator decisions that are taken after an attack occurs. The

first component could be developed on the basis of assessing

component security (ex: is encryption used, how secure is the

installation). This paper focusses on the second component:

quantifying the economic consequences of data integrity at-

tacks. More precisely, the operator schedules generation to

meet load to minimize some economic cost function J subject

to various constraints (ex: line limits, generator ramping and

rate constraints, N − 1 security constraints). In the pre-

attack state, the cost function has value J0. In the post-

attack state, the operator is misled into believing that loads

have changed, and that the current generation schedule is no

longer economically optimal. As a result, the cost function is

again minimized using the (compromised) load data, which

leads to a (possibly) larger cost J1. The increase in cost

ΔJ = J1 − J0 is the attack consequence metric we develop

in this paper. Interestingly, a decrease in cost ΔJ indicates

that a constraint violation will occur. In this paper, a decrease

indicates a violation of the thermal limits of a power line,

however, in other contexts this could indicate a violation in a

security constraint, such as N − 1.

III. GRID OPERATIONS

Independent System Operators (ISOs) and Regional Trans-

mission Organizations (RTOs) are responsible for reliable

operation of the electric power system in a region. They

dispatch generation, schedule for economic advantage, identify

equipment outages, redirect power to manage congestion,

coordinate with the neighbouring areas, facilitate effective

markets, and promote infrastructure expansion. In order to

maintain system reliability with equal treatment of all market

entities, these organizations are independent of utilities or

other market participants [17].

Control centers are designed to assist system operators

take decisions. Advanced software and visualization tools are

used to provide the operator with the timeliest and most

accurate grid data. System operators follow a set of operating

procedures that establish criteria for actions during particular

events.

A. Data

Grid operators rely on an enormous amount of real time

and historical grid information. The ISO monitors data from

the buses and substations in the region to maintain reliable

operations and determine what energy source will be the

most economical for any given location at any given time.

The grid data available includes, at minimum, the apparent,

real and reactive power, voltage, current and frequency at

every bus and line terminal, and the power flows that each

transmission line is carrying. Operators constantly monitor

critical system parameters, on numerous computer display

screens. Data arrives at the SCADA/EMS master stations from

numerous Remote Terminal Units (RTU) that collect field data

from substations and other remote power system locations.

B. Software Tools

Automated modelling tools give the operator a compre-

hensive view of the grid and how it evolves from dynamic

occurrences. A state estimator analyses real-time conditions of

the grid. Tens of thousands of data points from the power grid

are fed into computer algorithms to develop a series of contin-

gency analyses for potential events that could compromise sys-

tem reliability so that the operator knows how the grid evolves

in real time. As an example the Midwest ISO state estimator

collect data from 30,000 buses and 87,000 control points every
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30 seconds [18]. Video projection systems, alarming display

systems show real-time power-grid data from thousands of

endpoints that assist the operator in decision-making to ensure

safety and reliability of the transmission system. Power flow

models describe the physics of the system and include real

and reactive power, voltage angles and magnitudes. They are

used to check the feasibility of a dispatch and to optimize

real and reactive power dispatch. Other important software

tools are load forecasting, unit dispatch and economic com-

mitment, voltage and transient stability analysis, intermittent

and renewable resources modeling. Each ISO has information

about day-ahead real time markets through tools like the real

time market look ahead and the day-ahead market to schedule

generation with lengthy start-up times.

C. Dispatch Under Contingency

When faced with unexpected circumstances, the power

system operator first relies upon automated control sequences

programmed into the numerous levels of system dynamic

control. The automation is intended to rescue the power

system network from an unexpected contingency that occurs

faster than a human can respond. After the automated control

sequences achieve a new stable system operating point, the

operating personnel step in with pre-defined manual operat-

ing procedure intervention. The system operator necessarily

coordinates with system operators of other portions of the

interconnected network to coordinate restructuring the overall

power system network to the desired configuration.

D. Data Integrity Attacks

Power system data can be compromised. The attack can

take place at the analog measurement level or during digital

transmission through the communications circuits. Signals can

be compromised at the generation or substation level. The

physical quantities can be changed so that the sensing tool

measures unreliable or corrupted data. For example, voltage or

current can be modified before being measured. The corrupted

data is then transmitted to the RTU in the field and then

the control room. If the data alteration is done wisely it can

pass the bad data detection algorithms and is provided to the

operator as if it were reliable. He/she acts consequently and,

given the fact that the real grid conditions are different from

the corrupted information, potentially serious grid problems

can be generated. In the same way breaker and relay status

can be altered. Another means to compromise the signals that

the SCADA master receives consists in disturbing the data

format while on travel. The communication channel from the

substation to the control room could be fiber optics, telephone

wire, radio frequency or the message might be carried by the

power line.

In the next section we give a concrete example of how a data

integrity attack forces the operator to take dispatch decisions

that have serious consequences on the power grid.

IV. AN EXAMPLE

As discussed above, grid operators critically rely on data

in their decision making processes. Compromised data can

lead to economically sub-optimal dispatch choices, congestion,

and even failures of transmission lines. In this section we

offer a simple example that illustrates the damage that can be

induced by data integrity attacks through misinformed operator

decisions.

Consider an unobservable attack in which exactly two power

injection meters and the line connecting the two buses are

compromised [13]. The connecting line T is a cutset of the

power system graph. Loads L1 and L2 are served by power

generated by G1 and G2. Generator G1 and load L1 are in

the same island, while G2 and L2 are in a second island.

These islands are connected by the tie-line T which has a

thermal loadability limit of 200 MW. Generations and loads

have real power meters that transmit their readings over a

SCADA network to the system operator. Power flow on the

tie-line is not metered. The situation we consider is illustrated

in Figure 1.

The relevant pre-attack operating conditions are:

• generation: G1 = 100 MW, G2 = 400 MW

• loads: L1 = 300 MW, L2 = 200 MW

• tie-line flow T = 200 MW

At a certain time, a data integrity attack takes place. This

attack involves the compromise of the power meters at L1 and

L2. The post-attack (compromised) readings of these meters

are

L1 = 200MW,L2 = 300MW

This attack is unobservable as the compromised meters read-

ings are entirely consistent with the standard DC load flow

model. The operator perceives this attack as corresponding to

an unanticipated reduction in load at L1, and a simultaneous

increase in load at L2. Let us assume generation at G2 is

substantially less expensive than at G1. In response to this

load change, the operator may choose to reduce generation at

G1 and increase it at G2 to serve the new (compromised) load

conditions most economically.

G1
Post attack: 0 MW

Pre attack: 100 MW

Post attack: 500 MW

Pre attack: 400 MW2G

Post attack: 300 MW

Pre attack: 200 MWL 2
Post attack: 200 MW

Pre attack: 300 MWL 1

Pre attack: 200 MW

Post attack: 300 MW

Fig. 1. Data integrity attack causing line overloading.

The resulting post attack operating conditions (calculated

with the true loads) are:

• generation: G1 = 0 MW, G2 = 500 MW

• loads: L1 = 300 MW, L2 = 200 MW

• tie -line flow T = 300 MW
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It is therefore apparent that this attack has misled the operator

into a re-dispatch decision that overloads (and possibly dam-

ages) the tie-line. In this example, we could also reasonably

assume that power-flow on the tie-line is metered in the

SCADA network. In this case, we note that the attacker would

have to simultaneously compromise three meters (L1, L2, T )

to keep the attack unobservable. If the attack becomes ob-

servable, bad data detection algorithms run by the system

operator would produce warning flags and intervene in any

re-dispatch operations. We stress that the consequences of this

data integrity attack occurs only after the operator responds to

the compromised data.

V. MAIN RESULTS

In this section we discuss an analytical approach to measur-

ing the consequence of the unobservable attacks discussed in

[13]. Assessment of consequences is important when resource

limitations do not allow full deployment of countermeasures

to cover all unobservable attacks. To measure consequence, we

consider the DC Optimal Power Flow (DCOPF) as a model

of operator behavior and operator response to data integrity

attacks. More formally, the DCOPF used in this paper is stated

as follows1:

min
∑

i∈B cigi (1)

such that G−
i ≤ gi ≤ G+

i ∀i ∈ B (2)

li = Li ∀i ∈ B (3)
∑

j∈B bi,j(θi − θj) = gi − li ∀i ∈ B (4)

bi,j(θi − θj) ≤ Qi,j ∀i∀j ∈ B (5)

where B is the set of all buses in the power system, li is

the load served at bus i and gi is the generation at bus i.
ci is the cost to produce power at bus i. G−

i and G+
i are

the minimum and maximum generation at bus i. Li is the

amount of electric power demanded by bus i. θi is the phase

angle at bus i. bi,j is the susceptance between buses i and j
and Qi,j is the capacity between buses i and j. Equation 1

provides the objective function, which minimizes the cost of

generation. Equation 2 constrains the generation to be within

operating limits. Equation 3 ensures the specified amount of

load is served at each bus.2 We do not allow load shedding in

this model, as a data integrity attack that indicates a shedding

requirement to the operator would likely invoke a different

response protocol than is assumed here. However, it is possible

to incorporate load shedding by changing constraint 3 into an

inequality constraint and adding the cost of shedding to the

objective function. Equation 4 ensures conservation of flow at

each bus. Equation 5 constrains the amount of flow on each

line in the network. For simplicity, we denote the flow on

a line i, j as fi,j = bi,j(θi − θj). We also use σ to denote

1The approach generalizes to other DCOPF models that include security
constraints such as N − 1 and other controls such as load shedding.

2The DCOPF does not need this constraint, as the constant Li can replace
the li variable everywhere in the formulation. However, we include this as a
constraint as it allows us to compute the shadow price of the load and measure
the consequence of a data integrity attack at the loads.

the solution to the DCOPF and σ(x) to denote the value of

variable x in solution σ.

In this section we consider 3-sparse attacks [13] where an

attacker may falsify demand information such that net demand

remains constant. For example, given buses i and j with

demand li and lj , the attack, AΔ(i, j), may falsify the demands

as li +Δ and lj −Δ, for some value Δ.

The linear program solution to the DCOPF provides impor-

tant insight into the sensitivity of the power system to data

integrity attacks. In the solution, the shadow price (dual vari-

able) of the constraints measures how the objective function

changes in response to a change to the righthandside of the

constraints. In this context, the shadow price measures the

economic impact to the system when demand data is falsified.

Given a shadow price on li, denoted by l̃i and an attack of

size Δ, the economic impact of AΔ(i, j) is calculated as

l̃iΔ− l̃jΔ

The second piece of information in the solution is the range

of the righthand side for which a shadow price is valid. The

boundaries of the range are the points where a constraint

becomes tight or loose. In the physical system, it represents

the point where the operator will change its behavior. More

importantly, perhaps, within this range, the variation, ρ, of

all decision variables can be described with a single linear

function.

For the load constraints (3), we denote the upper and lower

bounds of the shadow prices range as l+ and l−, respectively.

The shadow price range is only valid for a single variation of a

constraint’s righthandside, however, there exists a conservative

bound for simultaneous variations. As long as the sum of all

the ratios of righthandside deviation to max deviations is ≤
1 then the shadow prices hold. More formally, for an attack

AΔ(i, j) , the shadow price does not change if Δ is smaller

than

argmax
δi

| l
+
i − (li + δi)

l+i − li
|+ | l

−
j − (lj − δj)

l−j − lj
| ≤ 1

and larger than

argmin
δi

| l
−
i − (li + δi)

l−i − li
|+ | l

+
j − (lj − δj)

l−j +−lj
| ≤ 1

where δi = −δj This range is denoted by Δ− and Δ+.

A. Operator Response

To compute the ρ for each decision variable during attack

Aδ(i, j), we choose a δi that falls within the shadow price

range and compute the solution to a new DCOPF, σδ:

min
∑

i∈B cigi (6)

such that G−
i ≤ gi ≤ G+

i ∀i ∈ B (7)

lk = Lk + δk ∀k ∈ B (8)
∑

j∈B bi,j(θi − θj) = gi − li ∀i ∈ B (9)

bi,j(θi − θj) ≤ Qi,j ∀i∀j ∈ B(10)
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TABLE I
GENERATOR OPERATIONS COST ($ PER MWH)

Bus Cost Bus Cost

1 142.0 16 101.0
2 142 .0 18 110.0
7 300.0 21 110.0
13 300.0 22 58.5
15 156.0 23 101.0

where δk = δi when i = k, δk = -δi when j = k, and 0

otherwise.

This model represents how the operator will respond to an

unobserved data integrity attack on the loads. The ρ values are

derived by computing the ratio between the original solution

and this solution. For example, ρ(gi) =
σ(gi)−σδ(gi)

δi
.

B. System Response

The system response to actions taken by the operator is

computed using the following DCOPF, σψ:

min
∑

i∈B cigi (11)

such that gi = σδ(gi) ∀i ∈ B (12)

lk = σδ(lk) ∀k ∈ B (13)
∑

j∈B bi,j(θi − θj) = gi − li ∀i ∈ B (14)

Thus, the system remains feasible if ∀i∀j
|fi,j |+ |Δ+ρ(fi,j)| ≤ Qi,j

and

|fi,j |+ |Δ−ρ(fi,j)| ≤ Qi,j

In short, if at (Δ−,Δ+) the system remains feasible, it

will remain feasible throughout the shadow price range. This

process can be repeatedly calculated by finding new shadow

prices at the boundaries.

VI. EMPIRICAL STUDIES

In order to evaluate shadow prices as a consequence mea-

sure we consider two different case studies. The cases adopt

the 24 bus IEEE RTS-79 problem [19]. The fuel types for each

generator are discussed in [20]. Based on these fuel types,

costs are calculated based on reference [21]. These numbers

are reported in Table I. In the case of multiple generators at a

bus, without loss of generality, we average cost weighted by

generation capacity.

In this model there is one unobservable 3-attack based on

the approach by [13]. This attack occurs at buses 7 and 8

and the power line between them. Bus 7 has generation with

maximum capacity 300 MW and a cost of $300 per MWH.

There is no generation at Bus 8. Bus 7 has 125 MW of load

and bus 8 has 171 MW of load. The power line between 7

and 8 has capacity 175 MVA. Given that generation at bus 7

is expensive and there is enough load at bus 7 and capacity

between 7 and 8 to accommodate all of 7’s generation it is not

expected that a data integrity attack on the loads at 7 and 8 will

have much impact. However, we must analytically determine

Fig. 2. Impact of data integrity attacks at buses 7 and 8 on the cost to
produce power.

Fig. 3. The shadow price for data integrity attacks at buses 7 and 8.

this. The shadow price on the loads for both 7 and 8 is $300,

as the only unused generation has cost $300. The shadow price

range for the load at bus 7 is (-9, 30) and at bus 8 is (-171, 13).

The change in price (as a % of the original price) is plotted

in Figure 2. Here it can be seen that even beyond that range,

the price of generation does not change (generation is shifted

from one $300 generator to another $300 generator as l̂i = l̂j).

Thus, in order to find a consequence we resolve the DCOPF

at each of these boundaries, and recompute the shadow prices

and ranges. Once we have done this successive times, as seen

in Figure 2, we see economic consequences. Finally, Figure

3 plots the rate of change (shadow price) for attacks of size

Δ = ±500. Transitions in both plots indicate where attacks

cause generation of different costs to be swapped.

This model provides an example of a low impact data

integrity attack. The attacker has to launch a substational

data integrity deviation (> 300 MW) in order to achieve any

changes in the price for power3 and is unable to have a physical

impact to the system within the range provided.

We next consider a variation of the RTS-79 that constrains

the network in the region of buses 7 and 8 to present a case

where the shadow prices detect larger consequences. Bus 7’s

3Indeed, this level of load deviation may raise red flags in other parts of the
security system, as it requires of the loads to report negative power demands.



6

Fig. 4. Impact of data integrity attacks at buses 7 and 8 on the cost to
produce power under constrained conditions.

generation capacity is increased to 400 MW and its generation

cost is dropped to $1. The shadow price on the load at bus 7

is now $1 as it can obtain up to 100MW of additional power

from the generator at bus 7. The shadow price for the load at

bus 8 is $300 as the power line from 7 to 8 is congested, so

it can only obtain generation from other parts of the network.

The shadow price ranges for the loads at bus 7 and 8 are

(-4, 100) and (-6, 330), respectively. Given the differences in

shadow prices, there is now an immediate economic impact for

a data integrity attack (Figures 4 and 5). In addition, in this

model, σ(f7,8) = 175 and ρ(f7,8) = 1. Thus, within these

shadow price ranges, a physical violation will be observed.

This effect is seen in Figure 6, which plots the amount of

flow that violates thermal limits on a line as δ is varied. This

is not unlike the example seen earlier in Figure 1.

Intuitively the physical violation occurs when the data

integrity attack increases load at bus 7 (decreasing load at bus

8). This causes the operator to think it can cheaply dispatch

generation at bus 7 to satisfy the extra load at bus 7. As

this extra load does not actually exist, the excess generation

is shipped on the already saturated line (7, 8), causing an

overload. In this case, the consequence does not go beyond the

physical damage to the line. Even if the line were to fail, there

is enough available generation and capacity in this system to

fully satisfy all loads without this line. However, this will not

be the case in general.

In short, given a DCOPF model of operator behavior,

the shadow prices and shadow price ranges of unobservable

attack vectors are a reasonable mechanism for determining the

consequence of an attack. The key contribution of this result

is to show that under linear response models, physical changes

and violations in a system under data integrity attacks can be

determined analytically by iteratively calculating the shadow

prices and their ranges. Though we focus on the DCOPF, the

techniques described here can be generalized to other models

of operator behavior, especially linear models. It remains for

future work to show how to use these measurements to prior-

itize the deployment of countermeasures. Possible approaches

include worst-case consequence within a specified range of

data integrity attacks or minimum attack that causes a physical

Fig. 5. The shadow price for data integrity attacks at buses 7 and 8 under
constrained conditions.

Fig. 6. Impact of data integrity attacks at buses 7 and 8 on physical
constraints.

problem in the system.

VII. CONCLUSIONS

Recent years have seen increased interest in a desire to

understand the vulnerabilities of electric power grids to cyber

attacks. Indeed, recent work by [13] has shown that it is

possible for an attacker to falsify information sent to the grid

operator so that the incorrect information remains consistent

with other measurements reported to the operator. However,

though a power grid may contain a large number of possible

unobservable data integrity attack vectors, it is clear that they

are not all equal in possible severity. This paper has shown that

under the linear DC dispatch model of grid operations, shadow

pricing information can be used to assess the economic and

physical impacts of data integrity attacks to power systems.

The approach is straightforward, can be adopted by many

existing operations models, is a necessary step for assessing

the consequences of attacks discovered by [13], and, to the

best of our knowledge, no one has suggested the use of shadow

prices in this way.

Though this paper has demonstrated how shadow price

information can be used to measure the consequence of

data integrity attacks, there remain a number of interesting

directions for future work. First, this paper has focused on
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data integrity attacks related to metering information (the

amount of load demanded by parts of the power grid). There

are other types of data integrity attacks that need to be

considered, including the on/off status of a power lines (either

from direct measurements or state estimation [22], [23], [24]),

the output of generators, the states of control devices, etc.

Second, this work needs to be extended to sparse attacks of

size greater than 3. Third, additional work needs to be done

to turn the shadow price measurements into a methodology

for prioritizing the deployment of countermeasures, such as

PMU place or hardware upgrades. For example, we could

posit a prioritization based on a certain level of attack and

ranking based on consequence severity within that threshold.

Or we could rank by minimum attack that violates physical

constraints in the system. Finally, it will be important to

develop analytical methods for assessing consequence in non-

linear operations models, as many of the important possible

physical problems (such as voltage and frequency) only occur

in such models.
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